
TINE-CNN Augmentation:
Automatic data augmentation for any image classification task

Robbie Ostrow
Stanford University

ostrowr@stanford.edu

Abstract

This paper introduces a new data augmentation tech-
nique for image classification problems. The method, TINE-
CNN augmentation1, requires no human knowledge about
the classification task and can effectively augment a dataset
without supervision.

We evaluate our method on CIFAR-10 and TinyIma-
geNet. TINE-CNN augmentation is an effective regulariza-
tion technique for both datasets, but our technique is es-
pecially helpful for TinyImageNet, which has more classes
but fewer samples per class. We trained a VGG-9 model
on each dataset augmented with TINE-CNN augmentation
and achieved 84.2% and 42.1% top-1 accuracy for CIFAR-
10 and TinyImageNet respectively. Training an identical
model using hand-tuned augmentation achieved 87.1% and
37.9% on the same datasets. Training without augmenta-
tion or with naive “kitchen-sink” augmentation performed
significantly worse. TINE-CNN augmentation can be com-
bined with other augmentation techniques to improve the
overall quality of the training data without requiring an ex-
pert to provide any specialized knowledge about the classes.

1. Introduction
Neural networks need a great deal of data on which to

train. On many tasks, this problem is partially mitigated by
data augmentation and transfer learning. However, it’s not
always clear what type of data augmentation is reasonable
for a specialized dataset – for example, adding rotation into
MNIST will result in confusing 6 and 9. In addition, decid-
ing how to effectively augment a training dataset adds yet
more hyperparameters to an already large model-design de-
cision space. Augmentation is typically an ad-hoc process,
and although there is recent work attempting to integrate it
more naturally into the training process, there is no generic
framework that researchers tend to use. Even so, data aug-

1Pronounced Tiny-CNN augmentation

mentation has long been in the toolbox of any neural-net
designer [13] and frameworks such as Keras often provide
easy augmentation APIs [1]. Unfortunately, these frame-
works run into all of the above problems. Modern regular-
ization techniques such as dropout can also help train CNNs
on comparatively small datasets, but nothing replaces sim-
ply having more data with which to train.

This paper introduces and evaluates a mechanism to au-
tomatically generate artificial data on a per-class basis. We
test our approach by evaluating the performance of a simpli-
fied VGG architecture [14] on CIFAR-10 [9] and TinyIma-
geNet [2]. We compare this to the performance of the same
model trained on the same datasets with naive data augmen-
tation, with hand-tuned augmentation, and with augmenta-
tion using our new approach. We find that our approach
for augmentation significantly outperforms no augmenta-
tion and naive augmentation, and can outperform hand-
tuned augmentation. However, this is no free lunch, as there
are preprocessing costs associated with our approach.

2. Related Work

Dempster et al. published a seminal paper in 1977 that
introduces an approach to the expectation-maximization
(EM) algorithm that works with incomplete data [4]. Tanner
and Wong expand on their work to formalize data augmen-
tation as a technique to help calculate more accurate statis-
tics about datasets that are known to be incomplete [15].
While neither of these papers had neural networks in mind,
they are nonetheless extremely helpful to understand the
theoretical justification for data augmentation in a generic
classification task.

The EM-algorithm can be described in an elegant closed-
form that allowed Dempster and Tanner to produce useful
theoretical results. Unfortunately, convolutional neural net-
works tend to be a great deal messier, so formal frameworks
for data augmentation for CNNs remain lacking. Models
that perform well on the ImageNet challenge [10, 14] al-
most always use ad-hoc data augmentation that happens to
work well on the particular problem, but may not be extend-

1

able to arbitrary classification tasks. These models tend to
use the same set of augmentation techniques (random rota-
tions, flips, crops, shifts, etc.) on every class in their dataset,
simply testing many parameter choices to find out which are
the most effective [6].

There are two major problems with the above approach.
First, deciding which data augmentation techniques to use
is a form of feature engineering, which makes the model
harder to create and less likely to generalize. Second, and
more importantly, these augmentations are applied to the
entire dataset at once, rather than on a per-class basis. This
makes sense for a dataset that has many similar classes that
tend to be deformed in similar ways, but classes for a large
image classification task are unlikely to all be helped by a
constant set of data augmentation techniques. For example,
an image of a bathtub will almost always be right-side up,
so vertical flips will probably not be a useful transform for
the “bathtub” class. On the other hand, an image of a can
opener should be recognized as a can opener from any direc-
tion. It’s clear that ImageNet’s “can opener” and “bathtub”
classes [5] shouldn’t be augmented in the exactly the same
way.

As the number of classes increases, it becomes more and
more difficult for a human to choose good augmentation
techniques on a per-class basis; and it’s not clear that a hu-
man would know how to choose good parameters even if
given the time. Hauberg et al. introduce a mechanism to
automatically learn distributions for each class from which
they can generate their own augmentation data [7]. This
paper is closest in spirit to our approach. However, that pa-
per attempts to learn exactly the transformations that each
class label is invariant to, which may be an extremely com-
plicated function. It’s hard to know exactly the effective-
ness of this approach as they only evaluated their augmen-
tation technique on variants of MNIST, which is generally
considered an “easy” dataset for modern classification tech-
niques [12].

There are many other techniques such as using
encoder-decoder networks to learn interpretable transfor-
mations [16] or using a generative network to automatically
blend images within classes [11], but these approaches are
very new and it’s not yet clear how effective they are in
practice2.

3. Datasets
We evaluate our data augmentation technique on two

separate datasets. First, we use CIFAR-10 [9], which has
60,000 images, each of size 32x32x3. These images are di-
vided into 10 classes of 60,000 images each. For training

2A few days ago, a paper was posted on Arxiv that claims state-of-the-
art performance on CIFAR-10 using a technique similar to mine [3]. Sadly,
I only noticed that paper a few minutes ago, so I wasn’t able to incorporate
its techniques into this project!

and evaluation, we chose a subset of 49,000 training im-
ages, 1000 validation images, and 10,000 test images.

We also use TinyImageNet [2], which has similar types
of images but many more classes and many fewer images
per class. TinyImageNet has 110,000 images, each of size
64x64x3. These images are divided into 200 classes, with
450 training images, 50 validation images, and 50 test im-
ages per class.

We normalized both datasets by subtracting from each
image the mean pixel value of the training dataset and di-
viding by the standard deviation.

We chose to evaluate on both of these datasets to de-
termine how different sizes of training data (4,900 training
images per class vs. 450) would impact the performance of
our data augmentation technique.

4. Methods
To evaluate our technique without model hyperparame-

ter choices confounding our analysis, we use a very simple
model based on a truncated version of VGG-16 to train all
networks in this paper (we call it VGG-9; see Table 1 for its
specification). This architecture is powerful enough to per-
form moderately well on either TinyImageNet or CIFAR-
10, but simple enough that changes in performance from
run to run are likely due only to the quality of the training
data and not to some nuance of the underlying architecture.

For both datasets, we train the VGG-9 network using the
Adam optimization method [8] with learning rate 0.0005.
Let C be the set of classes and let p(d, c) be the probability
that the classifier assigns image d to class c. Our network
attempts to minimize the crossentropy loss:

minimize

(
− 1

|data|
∑
c∈C

∑
d∈data

1(d’s true label is i) log(p(d, i))

)

We compare four different approaches to generating data
to feed into this VGG-9 network:

1. No augmentation – as a baseline, we fit the VGG-9 ar-
chitecture to each dataset without any data augmenta-
tion. Even with aggressive dropout, we see significant
overfitting.

2. Kitchen-sink augmentation – uniformly randomly
apply some subset of the following transforms to each
image:

• Flip horizontally

• Flip vertically

• Rotate somewhere between -90 and 90 degrees

• Shift up to 33% horizontally

• Shift up to 33% vertically

2

Input (32x32x3 or 64x64x3)
3x3 Convolution (64 filters)
3x3 Convolution (64 filters)

2x2 Max Pool
3x3 Convolution (128 filters)
3x3 Convolution (128 filters)

2x2 Max Pool
3x3 Convolution (256 filters)
3x3 Convolution (256 filters)

2x2 Max Pool
Dropout (in training, drop 90%)

FC 1024
Dropout (drop 90%)

FC 1024
Dropout (drop 90%)

FC (10 or 200 classes)

Table 1. VGG-9 architecture. Convolutional and fully-connected
layers use leaky RELU activations.

• Zoom from 70% to 130%

• Shift color channels up to 20%

• Shear image up to .2 degrees.

3. Hand-tuned augmentation – choose a good set of
universal augmentations based on human knowledge
about the dataset.

4. TINE-CNN augmentation – filter the data gener-
ated by kitchen-sink augmentation based on so-called
“TINE-CNNs” as described in Section 4.1.

4.1. TINE-CNN augmentation

The fundamental goal of data augmentation is to draw
new samples from a partially-known distribution. More for-
mally, we want to find the set T of transformations over all
possible input images I for which the class label is main-
tained:

T = {t : I → I|∀.i ∈ I : label(i) = label(t(i))}

.
This is an extremely hard problem, in part because the

vast majority of possible images don’t have a reasonable
label, and partially because finding a universal transforma-
tion function t is likely to be very difficult. As discussed in
Section 1, a simple transformation that maintains the class
label “can opener” may not also maintain the class label
“bathtub.”

Instead, we attempt to approximate the solution to a sim-
pler problem: given a class c and an image i, what is the

probability that i belongs to class c? This is a bit of a
chicken-or-egg problem because we could use any oracle
that could answer this question in place of our image classi-
fier. However, in order to find good augmentation data, we
only need to determine whether it would be reasonable to
guess that i belongs to class c.

We can construct a naive representation of a class c by
training a very simple binary classifier on elements of that
class versus random samples from other classes. If we have
a black-box that generates augmentation data, we can deter-
mine which samples from that generator are “reasonable”
samples by checking whether the binary classifier thinks
sample s belongs to class c with probability above some
threshold pt.

Hopefully, the latent representation of the class c inside
the binary classifier will learn some fundamental properties
of the samples it’s seen. If every single element of the “tree
frog” class is green, it will assign very low probability to a
non-green image being a tree frog. On the other hand, an-
other classifier learning about parrots might be much more
flexible about the color of the image.

This strategy depends on the training data being a rep-
resentative sample of all possible class images. This is,
of course, a simplifying assumption, but it’s one that’s im-
possible to avoid; a learning algorithm shouldn’t be able to
make inferences about training data that doesn’t exist.

Notice that we already have a way to generate potential
class members – kitchen-sink augmentation! We can also
build a simple set of binary classifiers using very shallow
CNNs. Finally, we’re ready to introduce the Training Im-
ages Naively Embedded in a CNN, or “TINE-CNN” aug-
mentation algorithm.

A high-level overview of Algorithm 1: The TINE-CNN
augmentation algorithm trains three TINE-CNNs (see Ta-
ble 2) for each class3. The input to train a TINE-CNN
for class c is every element of class c, along with an equal
number of randomly sampled elements from the rest of the
dataset, with binary labels 1 and 0 respectively. We train
several classifiers so a poor sample doesn’t skew the results.
Train for 10 epochs, holding out 10% for validation and us-
ing the best validation model to prevent overfitting.

To generate augmentation data, we iterate through the
training dataset and perform a random transformation on
each sample. If the median TINE-CNN classifies the trans-
formed image as the original class with probability greater
than some threshold pt, then we accept this transformation
and pass it on to the global model. Otherwise, we simply
return the original image without any transforms. We can
generate arbitrarily many samples in this way, and generate
them in parallel while we train the global model. Table 3
shows three transforms that TINE-CNN accepts, and three

3For TinyImageNet, this ends up being 600 classifiers, which was too
much for my GPUs, so we only trained one per class for TinyImageNet.

3

Input (32x32x3 or 64x64x3)
3x3 Convolution (16 filters)
3x3 Convolution (16 filters)

2x2 Max Pool
Dropout (in training, drop 80%)

FC 256
Dropout (drop 80%)

FC 2 (binary classification)

Table 2. TINE-CNN architecture. Convolutional and fully-
connected layers use RELU activations.

that it doesn’t. TINE-CNN tends to accept about 75% of
kitchen-sink transforms with pt = 0.1, though the exact
value varies from class to class, as some classes are more
robust to transforms than others.

Allowed Rejected

Automobile?

Truck?

Cat?
Table 3. Randomly chosen transforms and whether they pass the
TINE-CNN filter.

5. Experiments & Results

5.1. Setup

We used the same setup for all experiments to fix ev-
ery variable except the data augmentation technique. We
trained a VGG-9 classifier using an Adam optimizer for 50
epochs with learning rate 0.0005. For some of the experi-
ments, it was clear that the model overfits in far fewer than
50 epochs, or was still training with this learning rate after
50 epochs, but we determined that it was more important to
have a consistent set of evaluation metrics than a perfectly

Algorithm 1 TINE-CNN Augmentation.
1: procedure AUGMENT(data, classes, threshold)
2: classifiers← {}
3: for cl ∈ classes do
4: members← {d ∈ data|label(d) = cl}
5: nonmembers← {d ∈ data|label(d)! = cl}
6: [sample] ← take |members| random items

from nonmembers, 3 times
7: classifiers[cl] ← train 3 TINE-CNNs on

members, [sample]
8: end for
9: while True do . generate data indefinitely

10: for d ∈ data do
11: td← randomTransform(d) . using

kitchen-sink transformations
12: pc← median(classifiers[label(d)].predict(td))
13: if pc > threshold then
14: Yield td
15: else
16: Yield d
17: end if
18: end for
19: end while
20: end procedure

optimal model. We used a batch size of 256 and generated
all augmentation data on demand.

We primarily examine top-1 and top-2 accuracy for
CIFAR-10, and top-1 and top-5 accuracy for TinyImageNet,
though examining the loss curves and confusion matrices
are also instructive to help understand how the models are
training.

We trained 3 TINE-CNNs per class for CIFAR-10. Un-
fortunately, due to GPU constraints4, we could only train
1 TINE-CNN per class for TinyImageNet. We trained each
TINE-CNN for 10 epochs and chose the epoch with the best
validation accuracy. Since each TINE-CNN is so small and
only trains on a few thousand datapoints, training all 200
for TinyImageNet took only about an hour; training VGG-9
on TinyImageNet for 50 epochs takes approximately three
times as long, so preprocessing is expensive but not pro-
hibitively so. Once all of the TINE-CNNs were trained, we
generated the augmentation data in parallel to the training
– which required two GPUs, because we had to constantly
run TINE-CNN predictions alongside the VGG-9 training –
but with the extra GPU, this wasn’t a training bottleneck.

For the “hand-tuned” augmentation, we found that good
choices for augmentation for both of these datasets were

• Rotate between -30 and 30 degrees

4All training was done on Google Cloud on a machine with 2 NVIDIA
Tesla K80 GPUs, 16 vCPUs, and 104 GB memory.

4

• Shift horizontally up to 20%

• Shift vertically up to 20%

• Zoom from 90% to 110%

• Flip the image horizontally

• Shear counterclockwise up to .2 degrees

These are certainly not the optimal parameter choices,
but they work well for both CIFAR-10 and TinyImageNet.

5.2. Results

Table 4 and Table 5 show basic statistics for VGG-9
trained using each of the data augmentation techniques de-
scribed above.

We found that TINE-CNN augmentation consistently
outperforms no augmentation and naive “kitchen-sink” aug-
mentation. After 50 epochs, the model trained with hand-
tuned augmentation had slightly better performance on the
CIFAR-10 test set, though the model training with TINE-
CNN augmented data was still underfit and had not yet fin-
ished training. Figure 1 shows the top-1 validation/training
accuracies for each approach on CIFAR-10.

Figure 1. Training and validation accuracies for CIFAR-10. It’s
easy to see that without any data augmentation, we have significant
overfit, while we’re we’re still training after 50 epochs with TINE-
CNN augmentation. Validation accuracy in solid lines, training
accuracy in dashed lines.

For TinyImageNet, TINE-CNN augmentation was the
most effective approach by far. However, both hand-tuned
augmentation and TINE-CNN augmentation both some-
what overfit TinyImageNet. Figure 2 shows the top-5 train-
ing and validation accuracies for each augmentation tech-
nique. The top-1 graphs have similar shapes. The TINE-
CNN model can be tuned to prevent overfit by decreasing
the threshold pt, but we report results for pt = 0.1 for all
experiments in this paper. While TINE-CNN augmentation
with pt = 0.1 was not enough to prevent a slight overfit of
TinyImageNet, it was still training on CIFAR-10 after 50

Figure 2. Top-5 validation accuracies for TinyImageNet, and the
corresponding validation losses per epoch. Kitchen-sink augmen-
tation is not included here since it performed much worse.

epochs, while the model trained with hand-tuned augmen-
tation overfit both.

Figure 3 shows the confusion matrix for TinyImageNet
trained using TINE-CNN augmentation. It’s a bit too large
to see, but the largest non-diagonal entry is between labels
n02814533 and n03100240, or “pickup truck” and “station
wagon.” This is to be expected because these two classes
are fundamentally similar, and it’s likely that a TINE-CNN
trained on a “pickup truck” class will accept a transform
that makes it look more similar to a station wagon.

Figure 3. Confusion matrix on TinyImageNet’s test set for a VGG-
9 model trained with the TinyImageNet training set with TINE-
CNN augmentation

It’s a bit easier to understand the confusion matrices for
a 10-class problem; Figure 4 shows the confusion matrices
for our model trained with hand-tuned augmentation and
trained with TINE-CNN augmentation. The third image

5

Augmentation type None Kitchen-sink Hand-tuned TINE-CNN
Top-1 test accuracy 0.785 0.741 0.871 0.842
Top-2 test accuracy 0.898 0.886 0.957 0.951
Minimum training loss 0.016 0.874 0.304 0.680
Minimum validation loss 0.664 0.753 0.412 0.639
Maximum training accuracy 0.995 0.690 0.892 0.757

Table 4. CIFAR-10 statistics

Augmentation type None Kitchen-sink Hand-tuned TINE-CNN
Top-1 test accuracy 0.285 0.410 0.379 0.421
Top-5 test accuracy 0.550 0.100 0.644 0.679
Minimum training loss 0.167 5.044 1.436 1.003
Minimum validation loss 3.191 4.917 2.807 2.604
Maximum training accuracy 0.950 0.027 0.608 0.716

Table 5. TinyImageNet statistics

shows the differences between the two matrices – a value
below zero means that the TINE-CNN-augmented model
had more entries in that slot. Interestingly, the model trained
with TINE-CNN augmentation does a much better job of
differentiating between the dog and cat classes, which was
the biggest problem for the hand-tuned model. It’s hard to
say why this is, but some visual examination of the training
set suggests that photos of cats are often rotated more than
30% from vertical – which TINE-CNN can account for but
the hand-tuning cannot.

Figure 4. Left: confusion matrix for the CIFAR-10’s test set
trained with hand-tuned data augmentation; Right: confusion ma-
trix when trained with TINE-CNN augmentation; Center: Differ-
ence between the confusion matrices (Left - Right).

In general, kitchen-sink augmentation consistently un-
derfit the datasets because it was constantly generating
training data that didn’t quite fit the class labels. Train-

ing without augmentation overfit each dataset within just
a few epochs. Hand-tuned augmentation and TINE-CNN
augmentation performed comparably, though TINE-CNN
augmentation worked marginally better on TinyImageNet.
We believe that TINE-CNN augmentation’s good perfor-
mance on TinyImageNet is due in part to the smaller class
sizes, but did not thoroughly test this hypothesis.

TINE-CNN augmentation performs around the same
level or better than hand-tuned augmentation for both
CIFAR-10 and TinyImageNet. It has the disadvantage of
requiring a bit of extra preprocessing time, but the signif-
icant advantage of not requiring any ad-hoc augmentation
that requires human knowledge. On an extremely special-
ized image classification technique, I expect that per-class
hand tuning will still work marginally better than TINE-
CNN augmentation. However, for any problem with many
classes or when an expert is unavailable, TINE-CNN aug-
mentation works – and can be dropped into any image clas-
sification task without configuration.

6. Conclusion & Future Work
Our automatic data augmentation algorithm performed

better than raw data or naive data augmentation on both
the CIFAR-10 and TinyImageNet datasets. While the hand-
tuned augmentation performed slightly better on CIFAR-10,
our model trained with TINE-CNN augmentation was the
most effective for classifying samples from TinyImageNet.

These results are very encouraging because they provide
convincing evidence that automatic data augmentation can
be as effective as current ad-hoc techniques. However, due
to computation constraints, we performed all of our analy-
ses on very a very simple model architecture that was un-
able to get near-state-of-the-art results. With more compu-
tational resources, we would like to repeat this analysis on
a more sophisticated model architecture. Additionally, the

6

TINE-CNNs themselves do not, in principle, have to actu-
ally be tiny. They could be sophisticated binary classifiers
in their own right. This wasn’t feasible with our experi-
mental setup, but I’m curious to find out whether training
a better set of TINE-CNNs will improve augmentation per-
formance.

TINE-CNN augmentation is fundamentally a method to
filter augmentation images generated in some other way.
In this paper, we use “kitchen-sink augmentation,” which
is simply a combination of simple image transforms. We
could apply the same idea to filter the augmentation strate-
gies proposed by any of [7, 3, 16] to see if a combination of
these strategies is more effective than a single one.

Finally, we analyzed TINE-CNN augmentation on two
traditional datasets, but would like to find out how it per-
forms in a more specialized space where expert knowledge
is much more important, such as a medical imaging classi-
fication task.

7. Contributions and Acknowledgements
All work for this project was my own, but I leaned heav-

ily on Andrej Karpathy’s course notes and on the wonderful
slides and lectures from this year’s iteration of CS231N.

References
[1] F. Chollet. Building powerful image classification models

using very little data. Retrieved December, 13:2016, 2016.
[2] CS231N. Tiny imagenet visual recognition challenge.
[3] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le.

Autoaugment: Learning augmentation policies from data,
2018.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[6] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
Advances in neural information processing systems, pages
2366–2374, 2014.

[7] S. Hauberg, O. Freifeld, A. B. L. Larsen, J. Fisher, and
L. Hansen. Dreaming more data: Class-dependent distribu-
tions over diffeomorphisms for learned data augmentation.
In Artificial Intelligence and Statistics, pages 342–350, 2016.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[9] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[11] J. Lemley, S. Bazrafkan, and P. Corcoran. Smart augmenta-
tion learning an optimal data augmentation strategy. IEEE
Access, 5:5858–5869, 2017.

[12] G. Loosli, S. Canu, and L. Bottou. Training invariant support
vector machines using selective sampling. Large scale kernel
machines, pages 301–320, 2007.

[13] P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best prac-
tices for convolutional neural networks applied to visual doc-
ument analysis. In ICDAR, volume 3, pages 958–962, 2003.

[14] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[15] M. A. Tanner and W. H. Wong. The calculation of posterior
distributions by data augmentation. Journal of the American
statistical Association, 82(398):528–540, 1987.

[16] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and
G. J. Brostow. Interpretable transformations with encoder-
decoder networks. In The IEEE International Conference on
Computer Vision (ICCV), volume 4, 2017.

7

